## High-pressure phase of LaPO₄ solved with single crystal x-ray diffraction

<u>J. Ruiz-Fuertes</u><sup>1,2</sup>, A. Hirsch<sup>3</sup>, B. Winkler<sup>2</sup>, A. Friedrich<sup>4</sup>, L. Bayarjargal<sup>2</sup>, W. Morgenroth<sup>2</sup>, L. Peters<sup>3</sup>, and G. Roth<sup>3</sup>

<sup>1</sup>Departament de Física Aplicada, Universitat de València, Burjassot, 46100, Spain; <sup>2</sup>Institut für Geowissenschaften, Goethe-Universiät, 60438, Frankfurt am Main, Germany; <sup>3</sup>Institut für Kristallographie, RWTH Aachen Universität, 52062, Aachen, Germany; <sup>4</sup>Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany. E-mail: javier.ruiz-fuertes@uv.es

With a high refractive index and low shear moduli, LaPO<sub>4</sub> monazite has a great potential as a host material for solid state lasers [1] and is a promising candidate as oxidation-resistant layer in ceramic composites [2, 3]. In addition, due to the crystal-chemical similarity between lanthanide and actinide elements, it is being intensively investigated for its use in the conditioning of radioactive waste [4]. One of the fundamental properties of lanthanide orthophosphates that is still not completely understood is their stability at extreme conditions. While a significant effort has been invested in the high-pressure study of orthophosphates with zircon-type structure ( $I4_1/amd$ ), in monazite-type ( $P2_1/n$ ) orthophosphates their lower symmetry and higher stability with respect to increasing pressure has limited the number of high-pressure structural studies to just one powder x-ray diffraction study [5]. Lacomba-Perales et al. [5] have shown that LaPO<sub>4</sub> undergoes a structural phase transition to an orthorhombic phase (proposed to be a barite-type structure with space group *Pnma*) at around 26 GPa and also that within the lanthanide orthophosphates LaPO<sub>4</sub> is the one with the lowest phase transition pressure. Solving the high-pressure phase of LaPO<sub>4</sub> would therefore provide insight into the pressure behavior of the family of monazite orthophosphates and is the goal of the present study.



**Figure 1.** Projections along the [010] direction of the monazite-type structure (left) and of the post-barite-type structure (right) of LaPO<sub>4</sub> as derived from our experiments at 27 GPa. Comparable sections of the crystal structures are highlighted in red.

Single-crystal *x*-ray diffraction experiments of LaPO<sub>4</sub> have been performed at different pressures up to 31 GPa at the P02.2 Extreme Conditions Beamline at PETRA III (DESY, Hamburg). We have found that LaPO<sub>4</sub> transforms at 26 GPa from the monazite-type structure to an orthorhombic structure in good agreement with Ref. 5. However, our structural solution has shown that instead of a centrosymmetric barite-type structure, the high-pressure phase of LaPO<sub>4</sub> is an acentric structure similar to the post-barite structure proposed by Santamaría-Pérez et al. for BaSO<sub>4</sub> [6]. The acentricity of the high-pressure phase of LaPO<sub>4</sub> has been proven by second harmonic generation (SHG) experiments, which show the emergence of SHG above 25 GPa. *Ab* 

*initio* calculations confirm the structural phase transition from the monazite-type to the postbarite-type structure at 21 GPa in LaPO<sub>4</sub>. However, the calculations also predict an additional phase transition at 10 GPa to a barite-type structure not observed experimentally.

## Bibliography

[1] E. Nakawaza and F. Shiga, Jap. J. Appl. Phys. 42, 1642 (2003).

[2] R. S. Hay, Ceram. Eng. Sci. Proc. 21, 203 (2001).

[3] J. Wang, Y. Zhou, and Z. Lin, Appl. Phys. Lett. 87, 051902 (2005).

[4] H. Li, S. Zhang, S. Zhou, and X. Cao, Inorg. Chem. 48, 4542 (2009).

[5] R. Lacomba-Perales, D. Errandonea, Y. Meng, and M. Bettinelli, Phys. Rev. B **81**, 064113 (2010).

[6] D. Santamaría-Pérez, L. Gracia, G. Garbarino, A. Beltrán, R. Chuliá-Jordán, O. Gomis, D. Errandonea, Ch. Ferrer-Roca, D. Martínez-García, and A. Segura, Phys. Rev. B **84**, 054102 (2011).